
KNL Hardware
Applications

Performance Optimizations
Conclusion

Introduction to Xeon Phi ”Knight Landing”

Jǐŕı Filipovič
Institute of Computer Science

Masaryk University

30. b̌rezna 2017

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Introduction

Xeon Phi

I Intel Many Integrated Core Architecture (MIC)

I competitor of GPU processors (high floating point per second, high
memory bandwidth)

I programmable as CPU (C++, OpenMP, MPI, . . . )

Knights Landing Architecture

I bootable processor (previous generation was PCI-E accelerator only)

I up to 72 cores

I 16 GB high-bandwidth memory (HBM)

I up to 384 GB DDR4 memory

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

KNL core

Core is based on Atom Airmont

I scalar performance significantly lower than Xeon CPU

I AVX-512 instruction set: 2× more flops per cycle comparing
AVX2+FMA3

I SMT-4: four virtual cores using hyper threading

Binary compatible with x86 64

I the same programming model, OS, tools

I existing software runs out of the box, but re-optimization may help

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

KNL memory

Main memory

I the same as contemporary Xeon-based systems (DDR4)

I about 100 GB/s

I symmetric access by default

High-bandwidth memory

I limited size 16 GB

I about 450 GB/s

I explicit NUMA node, cache or both

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

KNL architecture

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

KNL in CERIT-SC

6 nodes equipped with Xeon Phi 7210

I phi1-phi6.cerit-sc.cz

I 1.3 GHz, 64 cores

I 384 GB RAM (phi5-phi6), 192 GB RAM (phi1-phi4)

I available in queue phi@wagap-pro.cerit-sc.cz

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

HW comparison

Comparison of HW available in MetaCentre

Processor SP/DP Memory Cache
(GFLOPs) (GB/s) (L1, L2, L3, L4)

Xeon Phi 7210 5 324/2 662 450/102 64, 512KB, 32MB, 16GB
Xeon E7-4830v4 896/448 85 64, 256KB, 35MB
Tesla K40 5 040/1 680 288 64KB, 1.5MB

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Phi vs. GPU

Phi advantages

I no PCI-E bottleneck: fits for applications extensivelly using large
data structures

I may execute applications not prepared for Phi (GPU has different
programming model)

I easier migration of applications

GPU advantages

I higher raw performance

I older – thus more applications are prepared

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Efficient applications

Scaling

I efficiently utilize 64/256 cores

I balanced parallel workload is crutial

Vectorized code

I using AVX512 brings much higher performance

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Efficient applications

Memory-bound applications

I FFT, finite difference method, iterative solvers . . .

I HBM bandwidth is comparable to 8-socket NUMA nodes

I programs not optimized for NUMA are more efficient on Phi

Compute-bound applications

I dense matrix factorization, n-body problem, data encoding . . .

I exploit high arithmetic throughput of Xeon Phi comparable to
4-socket node (equipped by the best Xeons available)

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Inefficient applications

Applications with scaling issues

I application must be able to run in sufficient number of threads
(processes)

I workload must be distributed evenly across threads (more difficult
with higher number of threads)

I more threads are more sensitive to suboptimal cache usage (false
sharing, conflict miss)

I suffers from Amdahl law...

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Amdahl Law and Phi

Our hypotetic application from computational chemistry

I 6/7 of workload: simulation steps (forces evaluation, integration):
parallelized

I 1/7 of workload: preparing molecules, creation of data structures,
results visualization: not parallelized

I suppose that Phi core is 2× slower in this application

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Amdahl Law and Phi

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Amdahl Law and Phi

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Inefficient applications

Poorly-vectorized applications

I Phi implements AVX512 (two instructions/clock per core): 16 DP or
32 SP operations in one cycle, doubled with FMA

I when not vectorized, code uses only small fraction of theoretical peak

I this is, however, also problem for new CPUs (ops per cycle doubled
with Haswell, will double also with Cannonlake)

I non-vectorized code can typically run as fast as about 16 CPU cores

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

How can we help?

Short-term view

I we will optimize heavily used applications (conservativelly, by tuning
compilation parameters, thread affinity etc.)

Long-term view

I CERIT-SC in-house research: how to program accelerators efficiently,
methods for automatic code tuning

I optimization of application’s codes (practical result of in-house
research)

I possible cooperation on development with CERIT-SC partners

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Application performance tuning

Application performance can be often improved by user-level tuning

I tuning compilation, execution of applications

I no source code modification

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Compilation

Generation of AVX-512 instructions

I AVX-512 instructions are generated by automatic vectorization

I cannot help when manual vectorization is used (assembly, intrinsics)

Compiler flags

I Intel C ≥ 15.0: add flag -xMIC-AVX512

I gcc ≥ 4.9.1 supports AVX-512: add flag -avx512{f,er,cd,pf}

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

High-bandwidth Memory

Three possible configurations of HBM

I flat: HBM is extra NUMA node (with no associated cores)

I cache: HBM caches access into main memory

I hybrid: half flat, half cache, seems to be the most reasonable setting
in MetaCentre

Execution of the whole application in HBM

I numactl -m 1 ./binary

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Parallelism

Experiment with number of threads

I SMT-4 may help when instructions cannot occupy all ALUs

I however, more threads means more issues with load balancing,
synchronization, cache locality

I test performance of your applications using 64, 128 or 256 threads

Physical and virtual cores

I physical core = coreID mod 64 (e.g. cores 0, 64, 128 and 192 are
the same physical core)

I when subset of cores are used, physical cores should be loaded evenly

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Parallelism

Mapping threads to cores

I OpenMP: OMP NUM THREADS = x is sufficient (tested on Intel
OpenMP), OMP THREAD LIMIT=256 may be needed to set maximal
number of threads

I MPI: mpirun -np x -bind-to core:overload-allowed (tested on
OpenMPI)

I can be checked by htop

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”



KNL Hardware
Applications

Performance Optimizations
Conclusion

Conclusion

Xeon Phi lies somewhere between GPU and CPU

I CPU code can be executed without modifications

I but Phi architecture is massively parallel

I performance peak comparable to 4-socket or 8-socket CPU node

I performance may be improved by quite simple tuning of application
execution (number of threads, used memory)

We will optimize applications for Phi

I specialized modules will appear . . .

Jǐŕı Filipovič Institute of Computer Science Masaryk University Introduction to Xeon Phi ”Knight Landing”


	KNL Hardware
	Applications
	Performance Optimizations
	Conclusion

