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Jǐŕı Filipovič
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Introduction

Xeon Phi

I Intel Many Integrated Core Architecture (MIC)

I competitor of GPU processors (high floating point per second, high
memory bandwidth)

I programmable as CPU (C++, OpenMP, MPI, . . . )

Knights Landing Architecture

I bootable processor (previous generation was PCI-E accelerator only)

I up to 72 cores

I 16 GB high-bandwidth memory (HBM)

I up to 384 GB DDR4 memory
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KNL core

Core is based on Atom Airmont

I scalar performance significantly lower than Xeon CPU

I AVX-512 instruction set: 2× more flops per cycle comparing
AVX2+FMA3

I SMT-4: four virtual cores using hyper threading

Binary compatible with x86 64

I the same programming model, OS, tools

I existing software runs out of the box, but re-optimization may help
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KNL memory

Main memory

I the same as contemporary Xeon-based systems (DDR4)

I about 100 GB/s

I symmetric access by default

High-bandwidth memory

I limited size 16 GB

I about 450 GB/s

I explicit NUMA node, cache or both
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KNL architecture
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KNL in CERIT-SC

6 nodes equipped with Xeon Phi 7210

I phi1-phi6.cerit-sc.cz

I 1.3 GHz, 64 cores

I 384 GB RAM (phi5-phi6), 192 GB RAM (phi1-phi4)

I available in queue phi@wagap-pro.cerit-sc.cz
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HW comparison

Comparison of HW available in MetaCentre

Processor SP/DP Memory Cache
(GFLOPs) (GB/s) (L1, L2, L3, L4)

Xeon Phi 7210 5 324/2 662 450/102 64, 512KB, 32MB, 16GB
Xeon E7-4830v4 896/448 85 64, 256KB, 35MB
Tesla K40 5 040/1 680 288 64KB, 1.5MB
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Phi vs. GPU

Phi advantages

I no PCI-E bottleneck: fits for applications extensivelly using large
data structures

I may execute applications not prepared for Phi (GPU has different
programming model)

I easier migration of applications

GPU advantages

I higher raw performance

I older – thus more applications are prepared
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Efficient applications

Scaling

I efficiently utilize 64/256 cores

I balanced parallel workload is crutial

Vectorized code

I using AVX512 brings much higher performance
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Efficient applications

Memory-bound applications

I FFT, finite difference method, iterative solvers . . .

I HBM bandwidth is comparable to 8-socket NUMA nodes

I programs not optimized for NUMA are more efficient on Phi

Compute-bound applications

I dense matrix factorization, n-body problem, data encoding . . .

I exploit high arithmetic throughput of Xeon Phi comparable to
4-socket node (equipped by the best Xeons available)
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Inefficient applications

Applications with scaling issues

I application must be able to run in sufficient number of threads
(processes)

I workload must be distributed evenly across threads (more difficult
with higher number of threads)

I more threads are more sensitive to suboptimal cache usage (false
sharing, conflict miss)

I suffers from Amdahl law...
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Amdahl Law and Phi

Our hypotetic application from computational chemistry

I 6/7 of workload: simulation steps (forces evaluation, integration):
parallelized

I 1/7 of workload: preparing molecules, creation of data structures,
results visualization: not parallelized

I suppose that Phi core is 2× slower in this application
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Amdahl Law and Phi
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Amdahl Law and Phi
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Inefficient applications

Poorly-vectorized applications

I Phi implements AVX512 (two instructions/clock per core): 16 DP or
32 SP operations in one cycle, doubled with FMA

I when not vectorized, code uses only small fraction of theoretical peak

I this is, however, also problem for new CPUs (ops per cycle doubled
with Haswell, will double also with Cannonlake)

I non-vectorized code can typically run as fast as about 16 CPU cores
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How can we help?

Short-term view

I we will optimize heavily used applications (conservativelly, by tuning
compilation parameters, thread affinity etc.)

Long-term view

I CERIT-SC in-house research: how to program accelerators efficiently,
methods for automatic code tuning

I optimization of application’s codes (practical result of in-house
research)

I possible cooperation on development with CERIT-SC partners
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Application performance tuning

Application performance can be often improved by user-level tuning

I tuning compilation, execution of applications

I no source code modification
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Compilation

Generation of AVX-512 instructions

I AVX-512 instructions are generated by automatic vectorization

I cannot help when manual vectorization is used (assembly, intrinsics)

Compiler flags

I Intel C ≥ 15.0: add flag -xMIC-AVX512

I gcc ≥ 4.9.1 supports AVX-512: add flag -avx512{f,er,cd,pf}
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High-bandwidth Memory

Three possible configurations of HBM

I flat: HBM is extra NUMA node (with no associated cores)

I cache: HBM caches access into main memory

I hybrid: half flat, half cache, seems to be the most reasonable setting
in MetaCentre

Execution of the whole application in HBM

I numactl -m 1 ./binary
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Parallelism

Experiment with number of threads

I SMT-4 may help when instructions cannot occupy all ALUs

I however, more threads means more issues with load balancing,
synchronization, cache locality

I test performance of your applications using 64, 128 or 256 threads

Physical and virtual cores

I physical core = coreID mod 64 (e.g. cores 0, 64, 128 and 192 are
the same physical core)

I when subset of cores are used, physical cores should be loaded evenly
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Parallelism

Mapping threads to cores

I OpenMP: OMP NUM THREADS = x is sufficient (tested on Intel
OpenMP), OMP THREAD LIMIT=256 may be needed to set maximal
number of threads

I MPI: mpirun -np x -bind-to core:overload-allowed (tested on
OpenMPI)

I can be checked by htop
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Conclusion

Xeon Phi lies somewhere between GPU and CPU

I CPU code can be executed without modifications

I but Phi architecture is massively parallel

I performance peak comparable to 4-socket or 8-socket CPU node

I performance may be improved by quite simple tuning of application
execution (number of threads, used memory)

We will optimize applications for Phi

I specialized modules will appear . . .
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